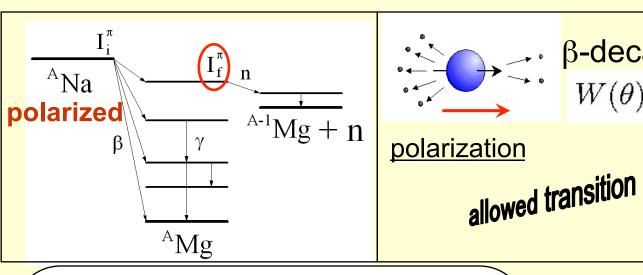

Structure of Mg Isotope Studied by β-Decay Spectroscopy of Spin-Polarized Na Isotopes - Shape Coexistence in ³⁰Mg -

A. Odahara, K. Tajiri and T. Shimoda Department of Physics, Osaka University in collaboration with KEK, TRIUMF, Univ. Paris and IPN Orsay

study for the nuclear structure of neutron-rich nuclei in the vicinity of island of inversion ²⁸Mg, ²⁹Mg, ³⁰Mg

shell evolution as a function of neutron number


new method by the β decay of the spin-polarized Na isotopes can determine the spin-parity of levels.

E.K. Warburton et al., Phys. Rev. C 41 (1990) 1147 Which level has the intruder configuration? How does shell structure evolve with *N*?

2. new method to assign spin-parity using spin-polarized beam

β-decay spectroscopy using spin-polarized beam very effective method to assign spin-parity of daughter states

β-decay angular distribution

 $W(\theta) \simeq 1 + AP\cos\theta$

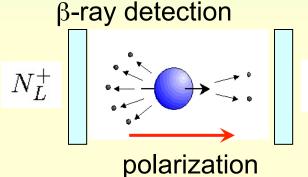
of allowed β-decay

A: asymmetry parameter

P: polarization

of the parent nucleus

initial final $=\frac{I_i}{I_i+1}$	$(\text{for } I_f = I_i + 1)$
$A(I_i, I_f) \left\{ \begin{array}{l} \simeq \frac{-1}{I_i + 1} \end{array} \right.$	$f_{i} = I_{i}$ assume pure GT
	$(\text{for } I_f = I_i - 1)$
A takes very diffe	rent values

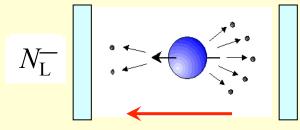

depending on the final state spin.

	I_i^π	I_f^π	$A(I_i, I_f)$
	(Na)	(Mg)	
		2+	+0.5
$^{28}\mathrm{Na}$	1+	1+	-0.5
		0+	-1.0
		$5/2^{+}$	+0.6
$^{29,31}\mathrm{Na}$	$3/2^{+}$	$3/2^{+}$	-0.4
		$1/2^{+}$	-1.0
		3^+	+0.67
$^{30}\mathrm{Na}$	2+	2^{+}	-0.33

-1.0

2. new method to assign spin-parity using spin-polarized beam

(1) how to deduce AP value


$$W(\theta) \simeq 1 + AP\cos\theta$$

$$N_R^+ = \epsilon_R imes (1+AP) imes N_0 \ N_L^+ = \epsilon_L imes (1-AP) imes N_0 \ N_L^- = \epsilon_L imes (1+AP) imes N_0$$

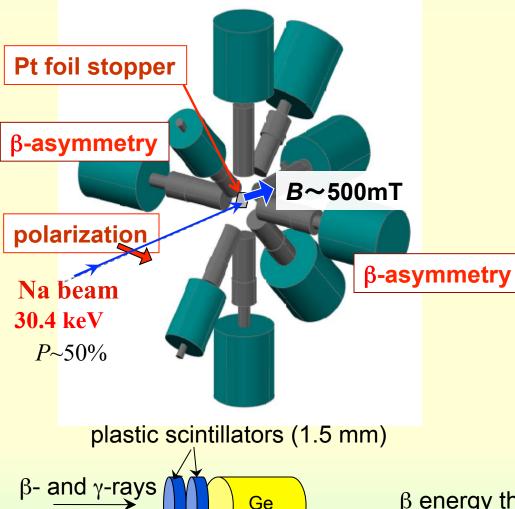
$$egin{array}{lcl} N_R^- &=& \epsilon_R imes (1-AP) ext{ xN}_{f 0} \ \\ N_L^- &=& \epsilon_L imes (1+AP) ext{ xN}_{f 0} \end{array}$$

 ε : detection efficiency

spin reversed

$$AP = \frac{\sqrt{R} - 1}{\sqrt{R} + 1} \quad \left(R = \frac{N_R^+}{N_L^+} / \frac{N_R^-}{N_L^-} \right)$$

free from instrumental asymmetry


(2) how to determine spin

P can be evaluated from AP value for a transition to the known spin state.

A → spin assignment

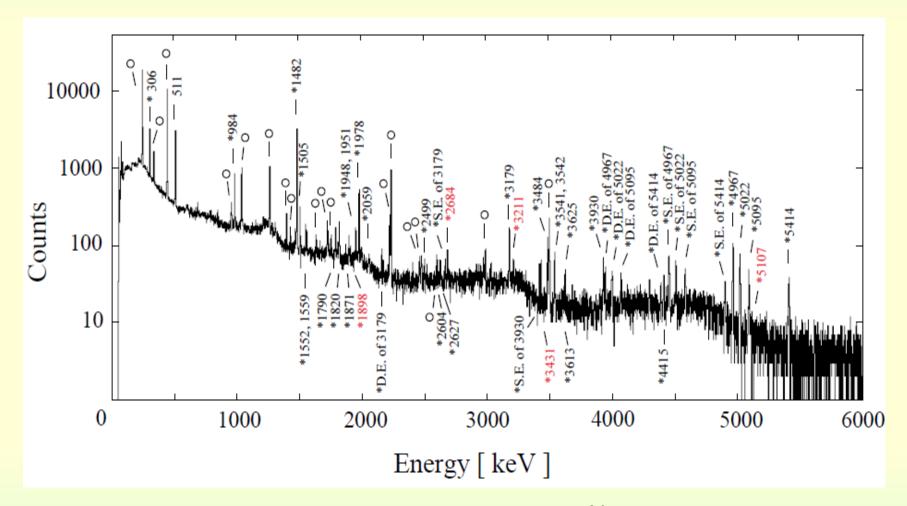
9 HPGe detectors + plastic scintillator telescopes

β-asymmetry: β - γ , β - γ - γ , γ - γ

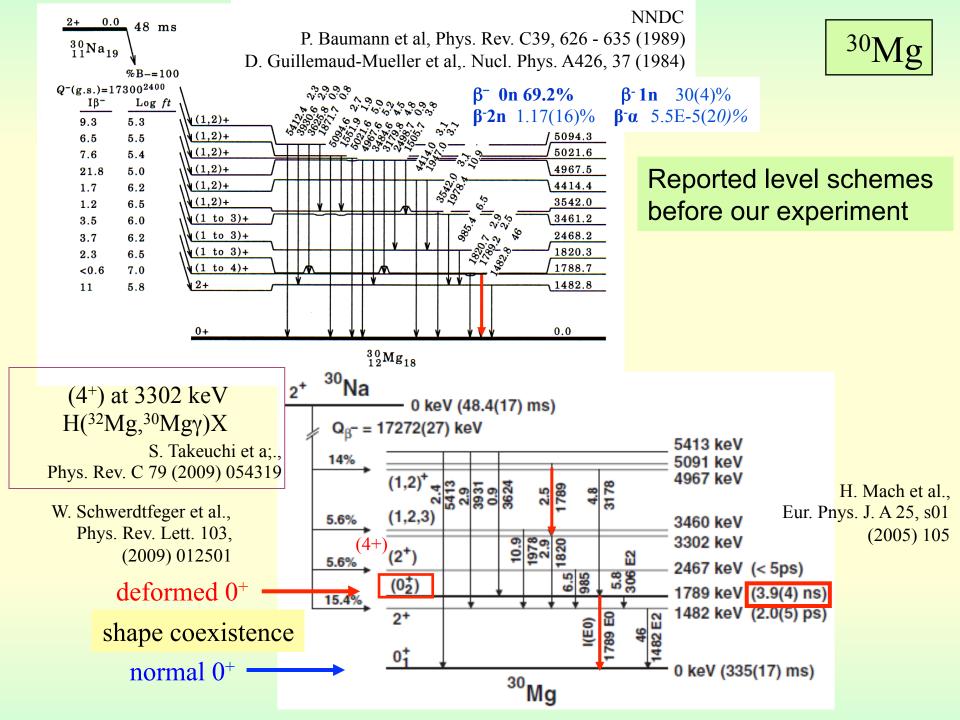
3. experiment

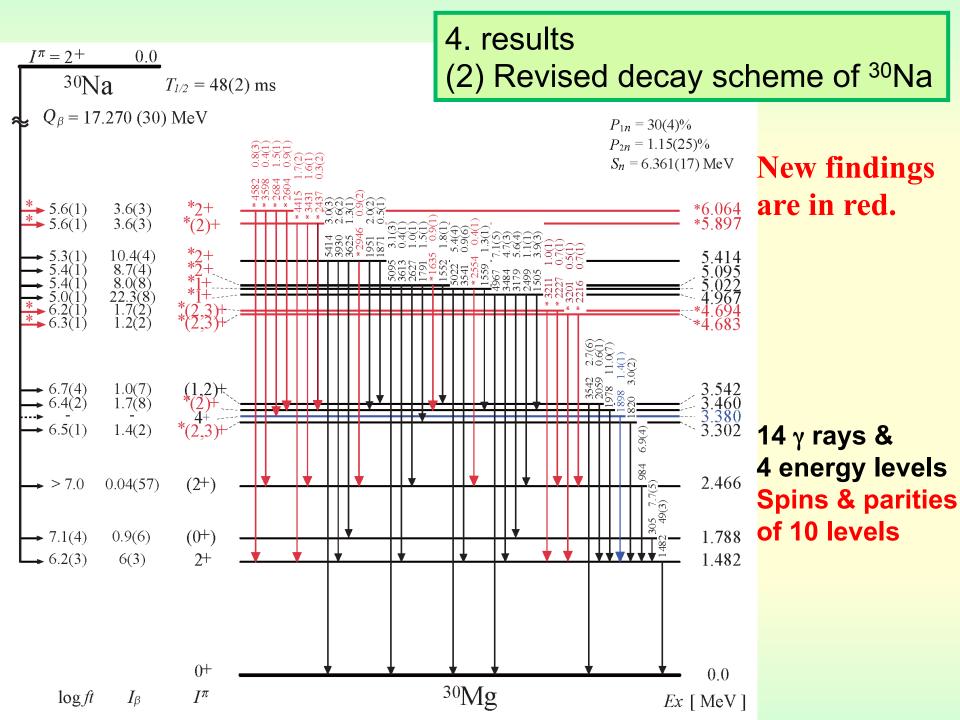
³⁰Na decay at TRIUMF

total efficiency 2.5% @1333keV

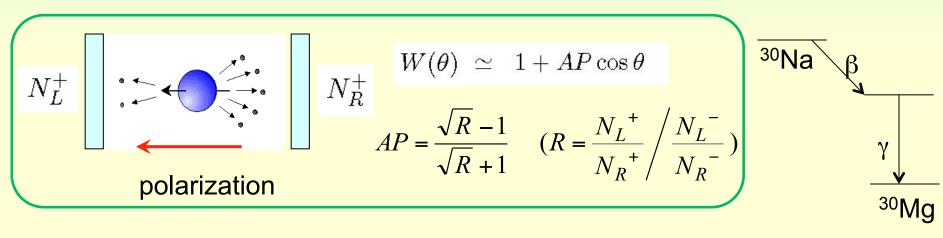

28Na and 29Na in Nov. 2007 30Na in Aug. 2010

β energy threshold: eliminates Al contaminants

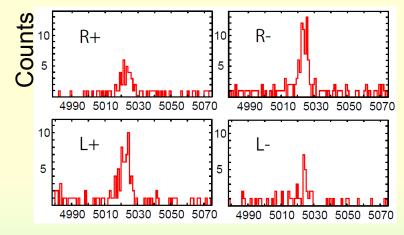

from trigger


 β energy: assigns β -decay branch

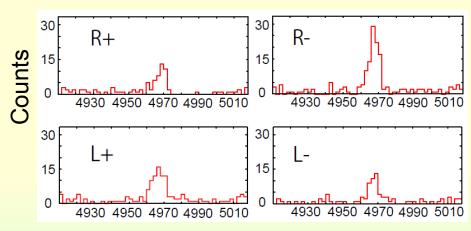
4. results (1) γ -ray spectrum of β - γ coincidence mode



peaks with energy value: γ-transitions in ³⁰Mg (red: newly found) O: background



4. results (2) polarization and spin (2-1) deduced AP values for 2 levels


5022 keV γ ray depopulating the 5.022MeV level

Energy [keV]

$$A_{5.022}P = 0.38 \pm 0.06$$

4967 keV γ ray depopulating the 4.967MeV level

Energy [keV]

$$A_{4.967}P = 0.29 \pm 0.04$$

4. results (2) polarization and spin (2-2) spin assignment from the deduced AP value

$$\frac{A_{4.967}P}{A_{5.022}P} = \frac{A_{4.967}}{A_{5.022}} = 0.76 \pm 0.16$$

Spins & parities of these 2 levels were reported to be (1, 2) +.

A/A: 4 patterns

$$\frac{I^{\pi}_{4.967}}{I^{\pi}_{5.022}} = \frac{1^{+}}{1^{+}} or \frac{2^{+}}{2^{+}}$$

Which is appropriate?

4. results (2) polarization and spin (2-3) deduced polarization P and determined spin

Which is appropriate?

$$\frac{I^{\pi}_{4.967}}{I^{\pi}_{5.022}} = \frac{1^{+}}{1^{+}} or \frac{2^{+}}{2^{+}}$$

Evaluation of spins & parities by calculating Polarization P

$$A_{5.022}P = 0.38 \pm 0.06$$

$$A_{4.967}P = 0.29 \pm 0.04$$

Polarization of ³⁰Na

$$32 \pm 3 \%$$

$$A_{5.022} = -0.33$$

$$A_{4.967} = -0.33$$

$$\left(\frac{I^{\pi}_{4.967}}{I^{\pi}_{5.022}} = \frac{2^{+}}{2^{+}}\right)$$

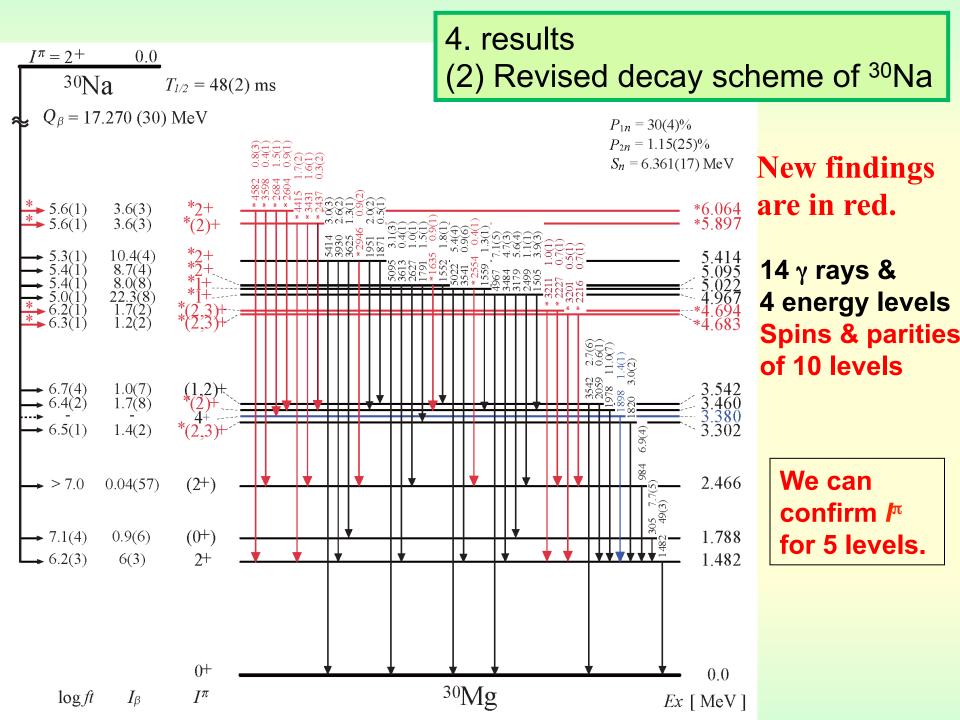
$$P = 1.14 \pm 0.17$$

$$P = 0.86 \pm 0.11$$

Too high!

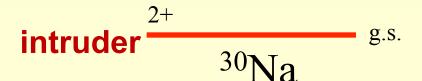
$$\left(\frac{I^{\pi}_{4.967}}{I^{\pi}_{5.022}} = \frac{1^{+}}{1^{+}}\right)$$

$$A_{5.022} = -1.0$$


$$A_{4.967} = -1.0$$

$$P = 0.38 \pm 0.06$$

$$P = 0.29 \pm 0.04$$

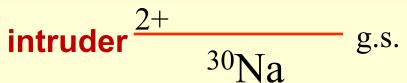

Spins and Parities of the 4.967, 5.022 MeV levels

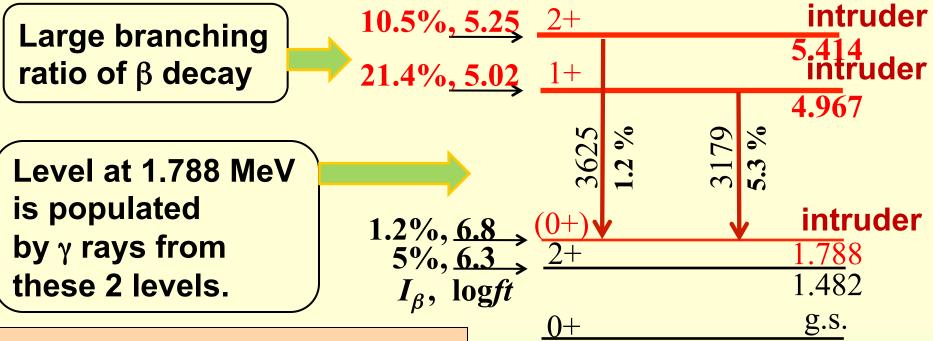
$$I^{\pi}_{4.967} = 1^{+}, I^{\pi}_{5.022} = 1^{+}$$

5. discussion 1

(1) candidate of the intruder states: level at 1.788 MeV

1.788 MeV (0+):


large β-decay intensity, even though secondary forbidden


previously reported to be
$$I_{\beta} \sim 0$$
 %
$$I_{\beta}, \log ft$$

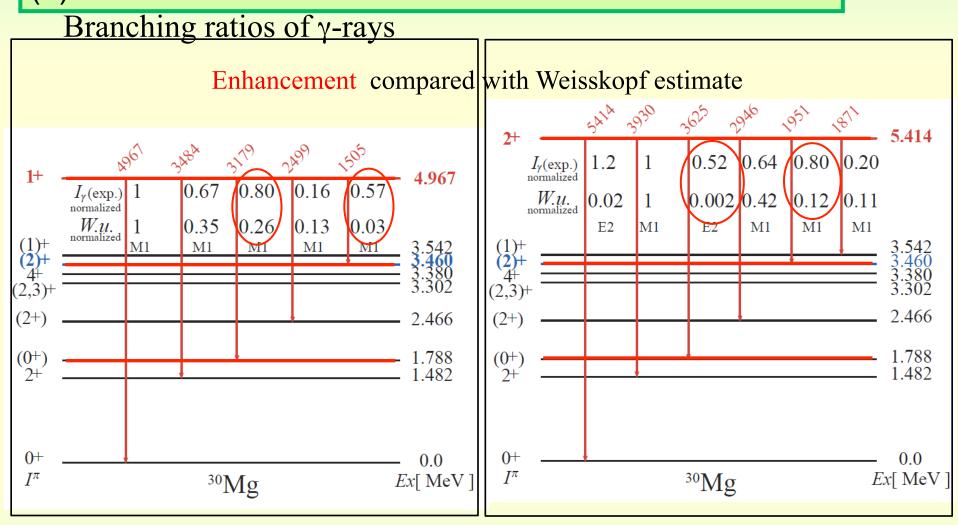
$$0+$$
 intruder 1.788
$$I_{\beta}, \log ft$$

$$0+$$
 g.s.

Level at 1.788 MeV is expected to have the intruder component.

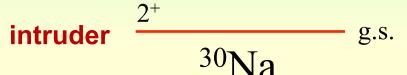
partial level scheme

5. discussion 1 (2) candidate of the intruder states : levels at 4.967 and 5.414 MeV



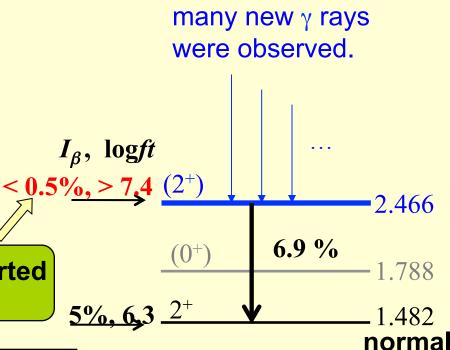
Levels at 4.967 and 5.414 MeV are expected to have the intruder component.

partial level scheme

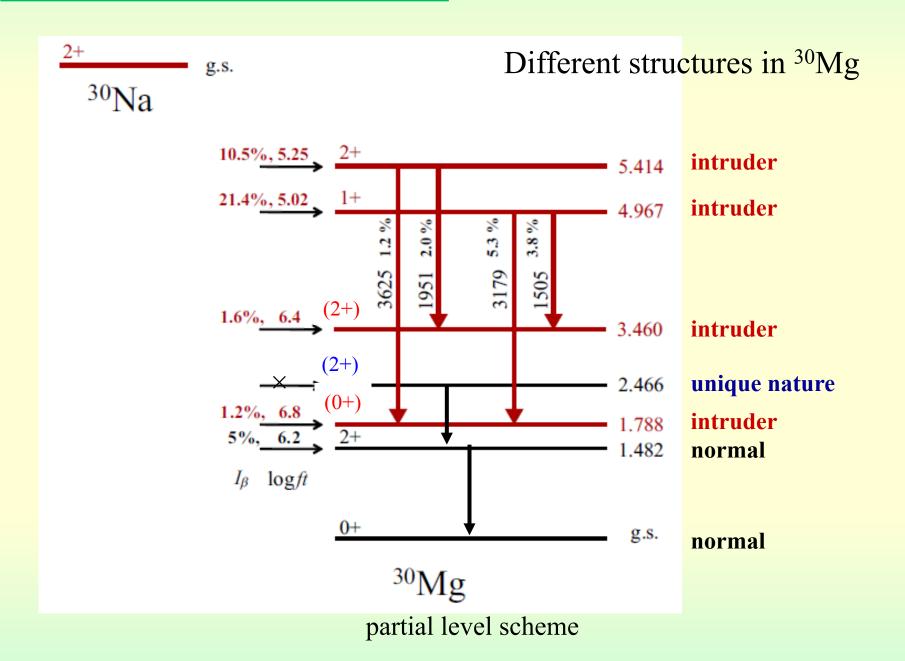

5. discussion 1

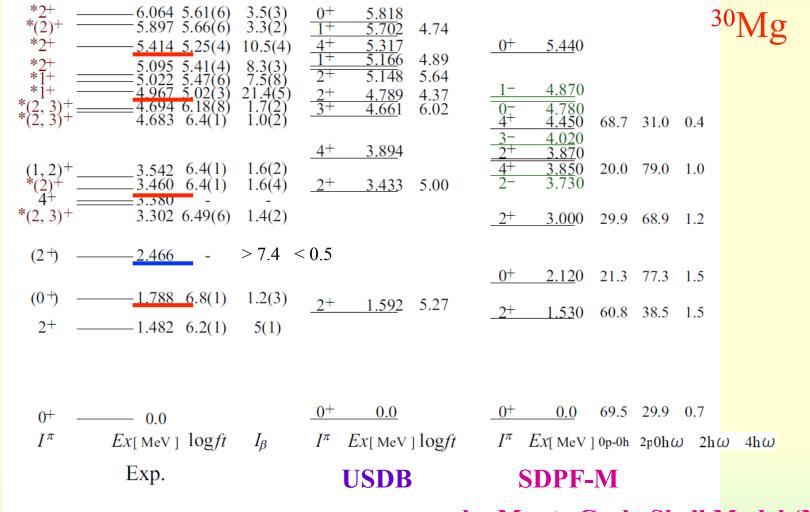
(3) candidate of the intruder states: level at 3.460 MeV

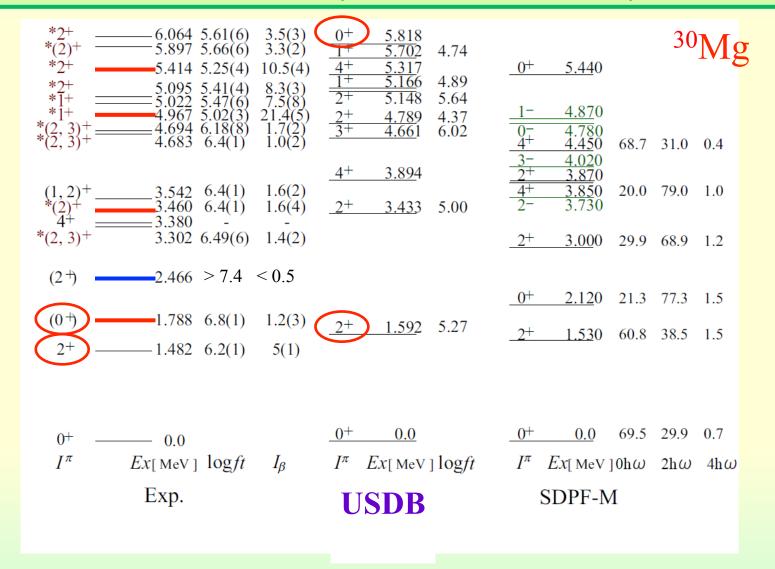
Levels at 5.414 MeV[2+], 4.967 MeV[1+], 3.460 MeV[(2+)] and 1.788 MeV[(0+)] are expected to have mainly intruder component.

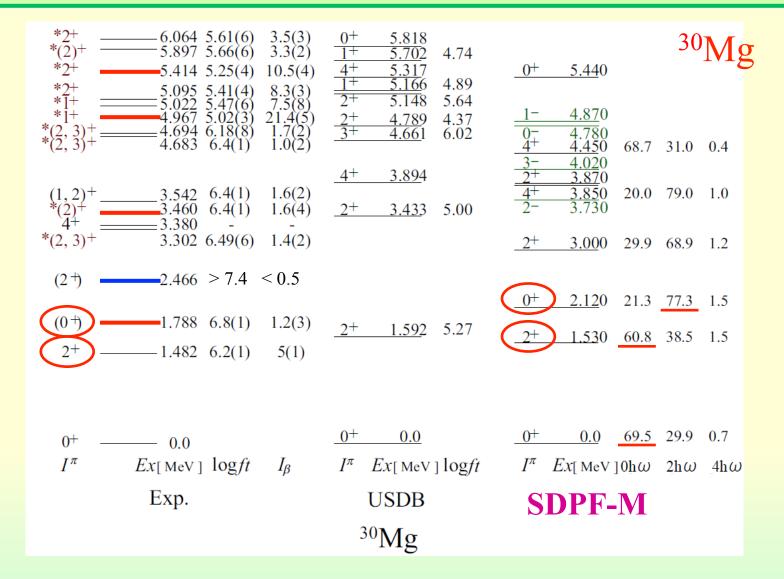

5. discussion 1(4) What kind of level at 2.466 MeV ?

To the level at 2.466 MeV, no or very small β -decay branching ratio. 2⁺ in ³⁰Na \longrightarrow 2⁺ in ³⁰Mg

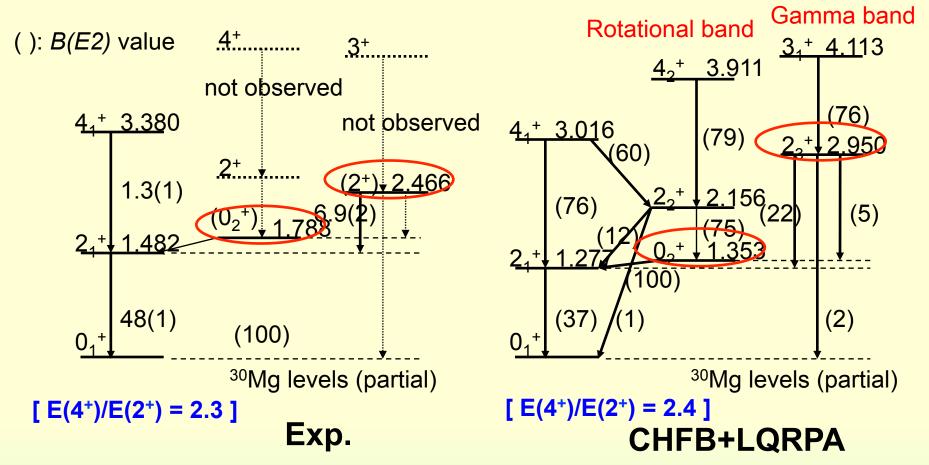

previously reported to be $I_{\beta} \sim 6 \%$


Level at 2.466 MeV (2₂⁺) maybe have different nuclear structure from the levels at 2⁺ in ³⁰Na(intruder) and at 1.482 MeV 2₁⁺ in ³⁰Mg (nomal).


30Mg normal partial level scheme


5. discussion 1 (5) summary

by NuShell Present work by Monte Carlo Shell Model (MCSM)
Y.Utsuno, Private communication



Good agreement can be seen for the levels at 1.482 MeV [2+] [normal] and at 1.788 MeV [(0+)] [intruder].

5. discussion 2 : Comparison between experimental results and calculation(2) Large amplitude collective motion (CHFB + LQRPA method)

N. Hinohara et al., Phys. Rev.C 84 (2011) 061302

Level at 2.466 MeV [(2+)]: 2+ in Gamma-band?

Summary of the nuclear structure in ³⁰Mg

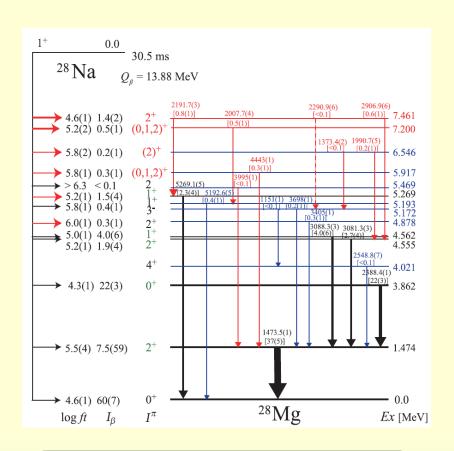
Summary

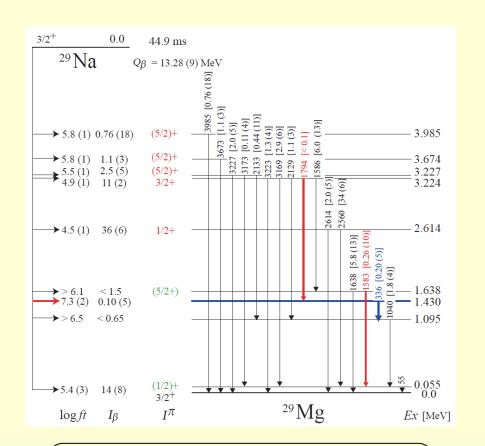
- ◆ We have successfully revised the level scheme of ³⁰Mg in β-decay spectroscopy of spin-polarized ³⁰Na.
- 4 levels and 14 γ-rays were newly observed.
 Spins and parities of 5 levels have been firmly assigned.
 Those of 5 other levels have been reasonably proposed.
- The observed β- and γ-transition paths and intensities strongly suggest that the four levels of (0+)(1.788 MeV), (2+)(3.460), 1+(4.967), and 2+(5.414) have large components of intruder configuration and one level of (2+) (2.466 MeV) is expected to be one of members in γ-band.

TRIUMF Experiment S1114

A. Odahara, K. Tajiri, T. Shimoda, M. Suga, N. Hamatani, H. Nishibata, J. Takatsu, R. Yokoyama, Y. Hirayama^A, N. Imai^A, H. Miyaktake^A, M. Pearson^B, C.D.P. Levy^B, K.P. Jackson^B, R. Legillon^C and C. Petrache^C

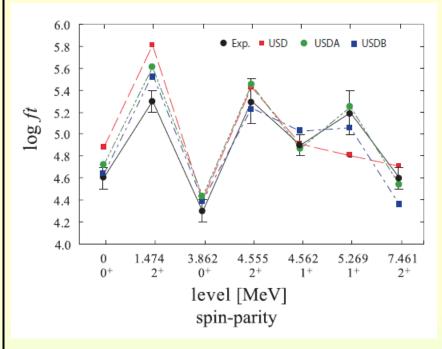
Osaka Univ., KEK^A,TRIUMF^B, Univ. Paris and IPN Orsay^C




Thank you for your attention.

Revised Decay Scheme of ^{28,29}Na and New Levels in ^{28,29}Mg

13 γ rays & 9 energy levels Spins & parities of 4 levels 3 γ rays & 1 energy levels Spins & parities of 7 levels


Comparison with Shell Model Calculation

 ^{28}Mg

			0+	8.040	0.186	5.38
			0 ⁺ 2 ⁺ 2 ⁺		0.303 0.0643	5.19 5.89
	o±		2 ⁺		2.57	4.36
1.4 (2) 4.6 (1)	$\frac{2^{+}}{(0, 1, 2)^{+}}$	7.461	1+	7.599 7.468		5.80 5.71
0.5(1) 5.2 (2)	(0, 1, 2)	7.200	0+	7.128		5.27
			·· 2 ⁺	7.055 6.948	0.641 0.216	5.15 5.66
	(2)±		0^+	6.592	0.215	5.60
0.2 (1) 5.8 (2)	(2)	6.546,	U	0.572	0.315	5.60
0.3 (1) 5.8 (1)	$(0, 1, 2)^+$	5.917	2+	6.070		5.12
<0.1 > 6.3	2	5.469	2 ⁺	5.567	0.19 2.06	6.08 5.06
1.5 (4) 5.2 (1)		5.269 5.192	1	5.519	2.00	5.00
0.4 (1) 5.8 (1)	3-	5.172				
0.3 (1) 6.0 (1)	2 ⁺ 1 ⁺	4.878 4.562	2 ⁺	4.794	0.0134	7.42
4.0 (6) 5.0 (1) 1.9 (4) 5.2 (1)	$\frac{1}{2^{+}}$	4.555	1 ⁺ 2 ⁺	4.664 4.543	3.48 2.31	5.03 5.24
- ' - '	4+	4.021	4 ⁺	4.168	-	-
22 (3) 4.3 (1)	0+	3.862	0^+	4.007	20.9	4.39
	a +	1.474	2+	1.518	4.21	5.55
7.5 (59) 5.5 (4)	2'	1.474 1.474			7.21	3.33
60(7) 4.6 (1)	0+	0.0	0+	0.0	60.0	4 64
		[MeV]	$I\pi$ E_{22}			
$I_{\beta} \log ft$	$I^{\prime\prime}$ EX	[MeV]	LX	MeV	J 1 _β 1	og ji
Exp. 28 Mg USDB						

interactions

USD USDA USDB

Code: NuShell

B.A. Brown et al., Phys. Rev. C74, 034315 (2006).

Comparison with Shell Model Calculation

²⁹Mg

(5/2)+ 3.986 5.8 (1 3.970 5.8 (1 (5/2)+ 3.674 5.8 (1 (5/2)+ 3.227 5.5 (1 3/2+ 3.224 4.9 (1) 1.1 (3) 1	9/2 ⁺ 4.184 = 7/2 ⁺ 4.147 9/2 ⁺ 4.071 1.23 5/2 ⁺ 3.973 5.49 1.66 5/2 ⁻ 3.531 5.46 14.2 3/2 ⁺ 3.227 4.59 4.40 5/2 ⁺ 3.039 5.14	$\begin{array}{c} -0.90 - 9/2^{+} \cdot 4.365 \\ 5/2^{+} \cdot 4.253 - 5.64 \\$	9/2 ⁺ 4.303 5/2 ⁺ 4.264 5.97 7/2 ⁺ 3.988 9/2 ⁺ 3.982 3.36 5/2 ⁺ 3.568 5.14 9.38 3/2 ⁺ 3.502 4.71 3.89 5/2 ⁺ 3.152 5.16
1/2+ 2.615 4.5 (1 2.500 2.266		29.0 1/2+ 2.438 4.44 0.46 3/2+ 2.192 6.28 _ 	0.493/2+_2.2696.31 7/2+2.249	
(5/2 ⁺) 1.638 > 6.0 1.431 7.3 (2 1.095 > 6.5	0.1075	0.34 5/2 1.542 6.53	0.37 <u>5/2</u> + <u>1.610</u> <u>-6.55</u>	0.15 5/2+ 1.594 6.89

Not predicted by USD interaction

exp

USD

USDA

USDB

Code: NuShell

B.A. Brown et al., Phys. Rev. C74, 034315 (2006).

Comparison with Shell Model Calculation 2

(Monte Carlo Shell Model by Utsuno et al.)

		ex	p	MCSM 1	y Y.U	tsuno	
	(1/2 ⁺) 3/2 ⁺	0.055 0 5.4 (3)	14(8)	=:	0.06	6.13 5.29	0.008 0.055 B(GT)
				7/2	0.68		
		1.095 > 6.5	< 0.65	3/2-	1.01		
	(5/2+)	1.638 > 6.0 1.430 7.3 (2)	<u> </u>	5/2+	1.73		0.000
				7/2+	1.98		
		2.500 2.266		1/2+	2.21	4.74	0.193
	1/2+	2.615 4.5 (1)	36 (6)	1/2- 3/2+ 5/2-	2.95 2.72 2.57		0.000
	(5/2) ⁺ 3/2 ⁺	3.227 5.5 (1) 3.224 4.9 (1)	2.5 (5) 11 (2)		3.28 3.00	5.91	0.003
		3.674 5.8 (1)		3/2+ 5/2+ 9/2- 3/2+	3.66 3.50 3.45 3.43		
			1.1 (3)	7/2-	4.00		
(1/2	to 5/2)+	3.985 5.8 (1)	<u>0.76 (</u> 18)	7/2+ 9/2+	4.30 4.04		
				5/2 ⁻ 9/2 ⁺	4.67 4.45		
				5/0-			

☐ Generalized Bohr-Mottelson collective Hamiltonian recent review: Próchniak and Rohoziński, J. Phys. G **36** 123101 (2009)

$$\mathcal{H}_{\mathrm{coll}} = \boxed{V(\beta,\gamma) + T_{\mathrm{vib}} + T_{\mathrm{rot}}}$$

$$T_{\mathrm{vib}} = \frac{1}{2} \boxed{D_{\beta\beta}(\beta,\gamma)} \dot{\beta}^2 + \boxed{D_{\beta\gamma}(\beta,\gamma)} \dot{\beta}\dot{\gamma} + \frac{1}{2} \boxed{D_{\gamma\gamma}(\beta,\gamma)} \dot{\gamma}^2$$

$$T_{\mathrm{rot}} = \frac{1}{2} \sum_{k=1}^{3} \boxed{J_k(\beta,\gamma)} \omega_k^2$$

$$\boxed{\mathbf{V}(\beta,\gamma)} \quad \text{collective potential}$$

$$\boxed{\mathbf{D}(\beta,\gamma)} \quad \text{vibrational collective mass}$$

 $J(\beta, \gamma)$

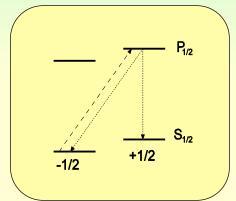
Microscopic derivations of functions in collective Hamiltonian

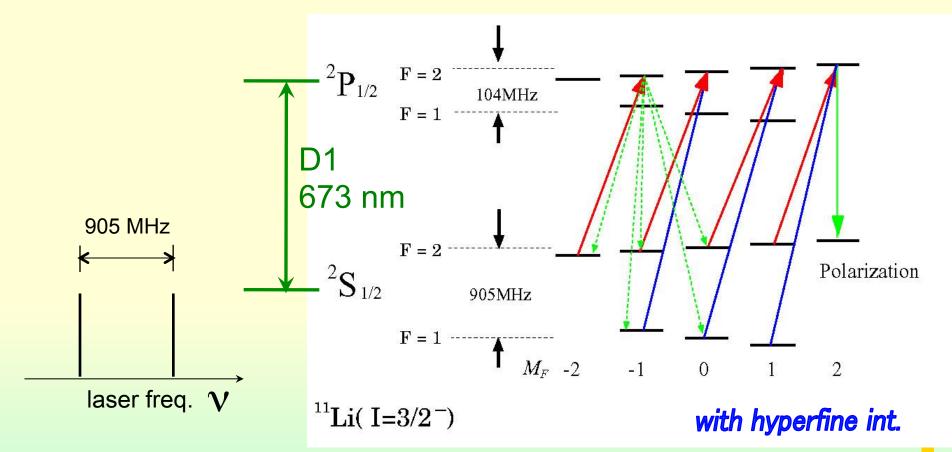
CHFB+LQRPA method NH et al., Phys. Rev. C82, 064313 (2010)

Constrained Hartree-Fock-Bogoliubov equation

rotational moment of inertia

Local QRPA equations for vibration


Local QRPA equations for rotation



- QRPA on top of CHFB state
- \square solved at each point in (β, γ) plane
- □ Hamiltonian used in QRPA also contains constraint terms
- □ derived from adiabatic self-consistent collective coordinate method
 (a successful version of ATDHFB theory) Matsuo et al., Prog. Theor. Phys. 103,959 (2000)

pumping the two ground-state hyperfine levels in order to achieve high polarization

Polarized beam line at TRIUMF

Commissioned in 2001

Two hyperfine levels are pumped Matching with the broad absorption line width

polarization achieved so far

⁸Li: 80%, ⁹Li: 56%, ¹¹LI: 55%,

²⁰Na: 57%, ²¹Na: 56%, ²⁶Na: 55%,

²⁷Na: 51%, ²⁸Na: 45%

Pumping for ¹¹Be⁺ beam is in progress.

Alkali RI beam from ISOL A⁺¹ beam at 10 – 60 keV

neutralizer

charge exchange in a Na vapor jet

 $A^{+1} + Na \rightarrow A^0 + Na^{+1}$: 90% efficiency

optical pumping

for fast neutral beam in collinear geometry two laser beams to pump the two ground-state hyperfine levels longitudinal polarization

re-ionizer

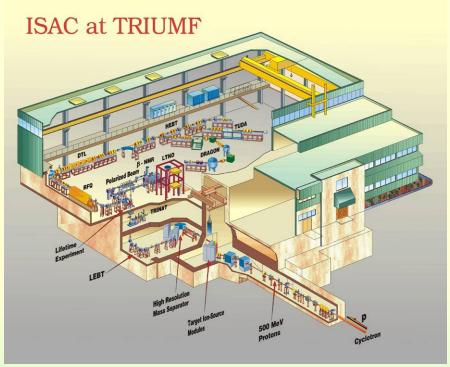
collision with a cold He gas target (12K)

$$A^0 \rightarrow A^{+1}$$
: 66% efficiency

bend

transversely nuclear-polarized ion beam

TRIUMF ISAC

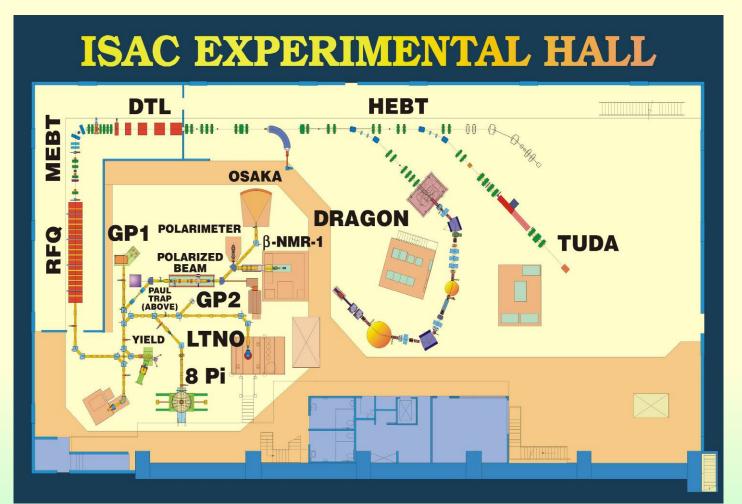

Isotope Separator / ACcelerator

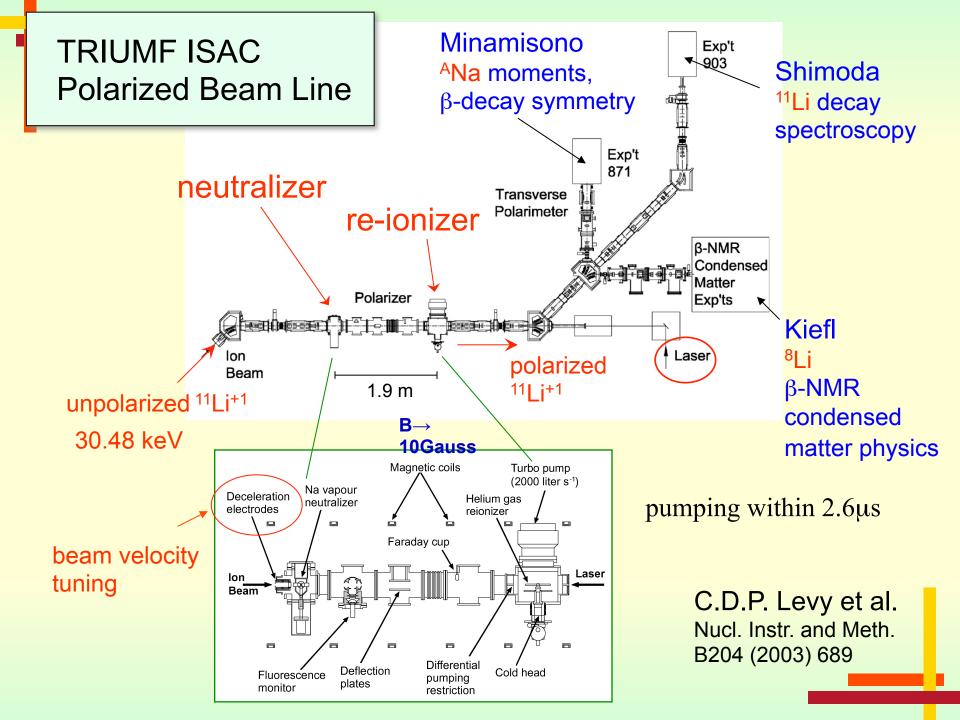
radioactive nuclear beams produced by 500 MeV 100 μA proton beam

ISAC-I: A \leq 30, 1.5 MeV/u (construction: 1995 - 2000) ISAC-II: A \leq 150, 6.5 MeV/u (construction: 2000 - 2005)

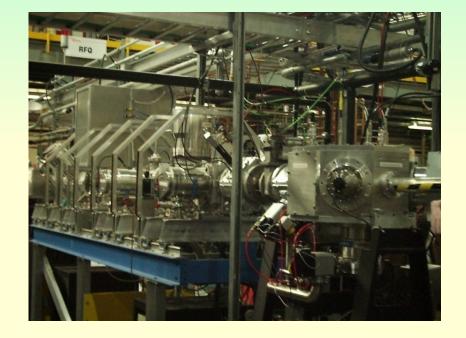
H⁻acceleration, extraction to 3 ports simultaneously In operation since 1974

ISAC-I

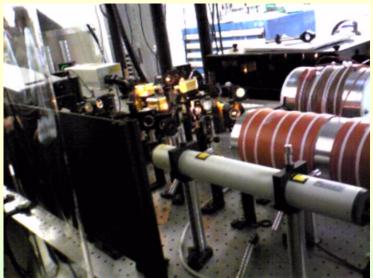



TRIUMF ISAC-I Experimental Hall

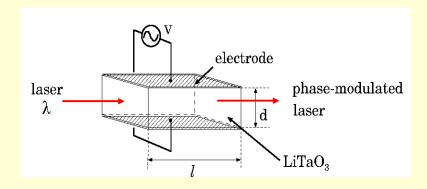
low energy beam line: Polarized beam, Osaka, β-NMR, LTNO (Low Temperature Nuclear Orientation), 8Pi (Gamma ball), GP (General Purpose)

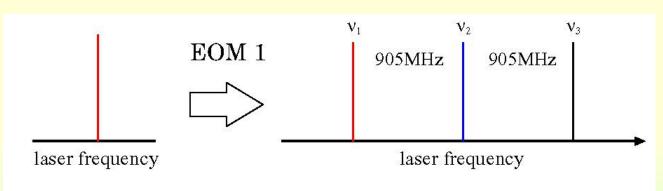

high energy beam line: DRAGON (nuclear astrophysics), TUDA (TRIUMF-U.K. Detector Array)

under ground level: TRINAT (TRIUMF Neutral Atom Trap), Lasers for polarized beam line



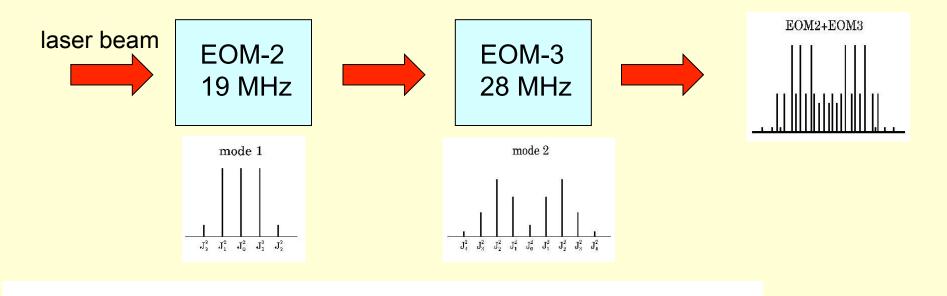
Polarized beam line

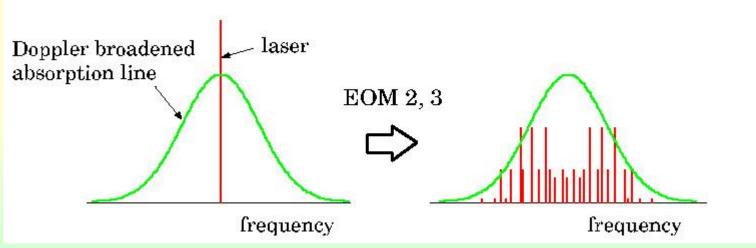

laser system



Electro-Optic Modulator (EOM)

driven at the hyperfine splitting frequency

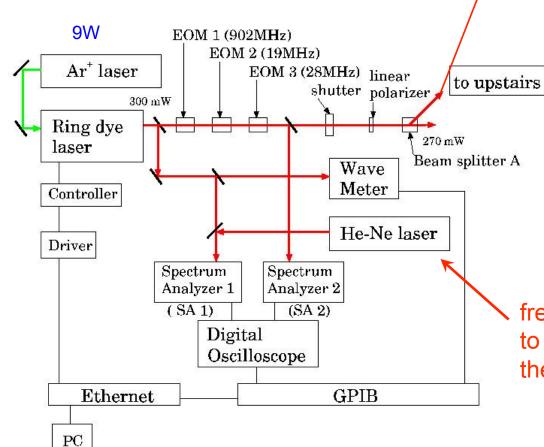




Only 1/3 laser power is used for each optical pumping.

broadening the laser line width

two EOMs in series



 8 Li $P{\sim}20\%$ \downarrow $P{\sim}70\%$

Laser system

Ring dye laser Coherent 899-21 Dye: DCM SPECIAL/LC 6501

673 nm cw circular polarized for ¹¹Li

φ8mm

Beam splitter B

Υm

PC

CCD camera

From downstairs

(polarization) (helicity)

 $\lambda/4$

plate

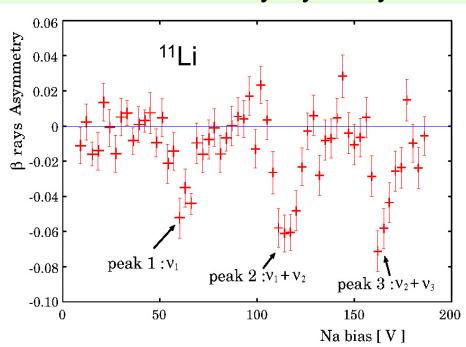
 $\lambda/2$

plate

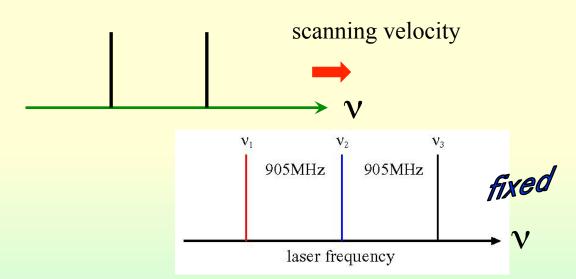
φ12mm

Polarizer

Power meter

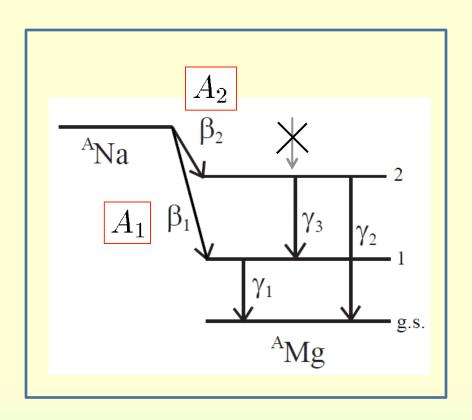

70 mW

frequency reference to actively stabilize the ring dye laser


Doppler-shift tuning

deceleration bias (Na vapor cell) tuning to adjust ion beam velocity so as to meet the Doppler shift

beta-decay asymmetry



absorption line

In the case of cascade feeding

Deduced A from β - γ coincidence is affected by the feeding from upper levels.

measured from β - γ_1 coincidence

$$A_1^{\gamma} = A_2 \times \frac{I_{\gamma_3}}{I_{\gamma_1}} + A_1 \times \frac{I_{\beta_1}}{I_{\gamma_1}},$$
 known unknown

$$A_1 = A_1^{\gamma} \times \frac{I_{\gamma_1}}{I_{\beta_1}} - A_2 \times \frac{I_{\gamma_3}}{I_{\beta_1}}.$$